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Some Topological Configurations in Gauge Theories 1 

Y. Nambu z 

California Institute of Technology, Pasadena, California 91125 

A Higgs vacuum field ~ is characterized by the set of conditions D,~ = 0, 
which lead to a generalized Meissner effect and partially determine the 
vector potential Au in terms of ~. Applying this method to the Weinberg- 
Salam theory, we assert that there exist stringlike configurations in which a 
pair of magnetic poles are bound by a flux string of the Z ~ field, with an 
energy scale in the TeV range. We also point out that pure gauges in non- 
Abelian gauge theories are not well-defined due to topological singularities. 
In order to be meaningful, they must be enlarged to a class of almost pure 
gauges which include the various known topological configurations. 

1. I N T R O D U C T I O N  

The main  po in t  o f  this paper  is to discuss cer tain classical configurat ions 
(Nambu ,  to be published)  3 which seem possible in the SU(2)  • U(1) theory  

of  Weinberg  and Salam, and which therefore are o f  direct  physical  interest  in 
contrast ,  for  example,  to the Nie lsen-Olesen  string and the ' t  H o o f t - P o l y a k o v  
monopole ,  which pr imar i ly  serve as p ro to types  o f  topologica l  configurat ions.  

By way o f  introduction, however, I will s tar t  with the general methods  
tha t  will be used. Let  us denote  by  ~(x) the nonzero  vacuum expecta t ion  value 
of  a Higgs field. The componen t  index is suppressed for  simplicity.  Usual ly  
~(x) is taken  to be a constant ,  bu t  the mos t  general  charac ter iza t ion  o f  ~(x) is 

D ~  = 0 for  all /~ (1.1) 

where D~ is a covar ian t  derivative. Equa t ion  (1.1) minimizes the kinetic  and  
potent ia l  energies separate ly  since it implies [~[2 = const ,  but  it  also leads to 
consistency condi t ions  

[D,,  D~]~ oc F,~gb = 0 for  all  (/zv) (1.2) 
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where Fur is a matrix acting on ft. This means that det Fu~ = 0 for all (/zv). 
In the case of U(1), ~b is one-dimensional, and F~  = 0. Thus equation (1.2) 
may be regarded as a statement of the Meissner effect. For non-Abelian gauge 
theories, the corresponding generalized Meissner effect is not always perfect, 
or in other words, not all components of F~  are necessarily zero. I f  a linear 
combination F~  ~ of generators can annihilate if(x), these components F]~ are 
not zero, and thus survive the Meissner effect. This happens in the 't Hooft-  
Polyakov SO(3) model where ff is an isovector. It also happens in the 
SU(2) x U(1) theory of Weinberg and Salam, and the surviving component 
is nothing but the electromagnetic field. 

Equation (1.2) thus amounts to a restriction on the vector potentials A~ * 
for a given $. Indeed it is possible to solve equation (1.1) for Au *. In the case 
of SO(3), the equation 

~u~b - gA x 0 = 0 (1.3) 

has the general solution 

g A .  = dp x Oudp + aud p (Ca = 1) 
(1.4) 

where a, is still arbitrary. 
Although equation (1.1) characterizes a Higgs vacuum, there are cases 

where the equations cannot be satisfied everywhere. This happens when the 
unit vector if(x) develops a topological singularity. Then d/,(x) is forced to 
vanish at the singularity, creating a 't Hooft-Polyakov monopole with a finite 
energy above the normal Higgs vacuum. More specifically, such will be the 
case if 

O(x) = (x / Ix l ) f (x)  (1.5) 

where f(O) = O, f(oo) -- 1. 

2. STRINGLIKE CONFIGURATIONS IN THE 
WEINBERG-SALAM THEORY 

We will now turn to the Weinberg-Salam theory. I f  the doublet Higgs 
field is denoted by u, the analogs of equations (1.1) and (1.2) a re  

O~u = [av - (ig/2)A u.'r - (ig'/2)Au~ = 0 [gFu~.x + g'F%]u = 0 (2.1) 

Manipulating with the first equation, we obtain 

gAu(u*u ) + g'Au~ + i(u*'r Ouu) = 0 (2.2) 

which can be transformed into many different forms because of the various 
Fierz identities involving u and u*. In particular, u*'ru-~ ~ has the same 
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properties as the ~ used before, i.e., it is an isovector with dp 2 = (u'u) 2, which 
may be normalized to 1. In any case, equation (2.2) is equivalent to 

gA~, = - d ~  x ~udp - ~icb(u* Ouu) g'Au ~ = - ( 1  - ~:)(u* ~uu) (2.3) 

with an arbitrary parameter ~. 
We would like to simulate the monopole situation given by equation 

1.5). For this, we can take 

= [ cos 0/2 ] (2.4) 
u \sin 0/2 e ~*] 

in polar coordinates. However, this is not quite admissible along the entire 
negative z axis because the phase of the second component becomes ill defined 
there, although dp does not have such a singularity. Thus we are forced to 
make the second component vanish along the negative z axis by modifying 
u a s  

u =  f(p) sin0/2 e ~* f ( 0 ) = 0  p 2 = x  2 + y 2  (2.5) 

In other words, we have to create a semi-infinite Nielsen-Olesen string in 
addition to the monopole at the origin. Such a system will have infinite energy, 
but a finite-energy system can be created by joining a pair of monopoles with 
a string. This is very much like the meson in the string model where the quarks 
take the place of monopoles. 

Since it seems impossible to find exact solutions, the existence of such 
configurations is an assertion based on the asymptotic behavior that we can 
handle, and an appeal to plausibility arguments. So we will not try to repro- 
duce here further mathematical details, but state the basic results only. Some 
more details will be found in Nambu (1977). The dumbbell configuration 
under consideration contains fluxes of SU(2) and U(1) gauge fields. Each 
of them consists of a part which spreads out from the poles, and a part 
which is confined within the string. The sum of the two parts is such that each 
pole is a genuine SU(2) monopole with quantized magnetic charge, whereas 
the U(1) flux is solenoidal with no source. The combination of the SU(2) and 
U(1) fluxes outside of the string is the real magnetic field generated by the 
monopoles of charge 

I Ol = (4rr/e)(1 -- ~) (2.6) 

On the other hand, the string has the lowest energy when ~ = cos 20w, 
i.e., when it is made up of a combination corresponding to the Z ~ field which 
remains massless. (These statements apply to the long string limit. In general, 
the division of fluxes inside and outside the string depends on the dynamics 
of motion.) 
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The mass M of  each pole and the tension r (energy per unit length) of  the 
string are estimated to be 

M ~ (4rr/3e)(sin Ow)5/2(mn/mw) ~lz x (250 GeV) 

~- = 1/2rr=' ~ ~r cos Ow(mn/mw)x(250 GeV) 2 
(2.7) 

Here cd represents the asymptotic slope of  Regge trajectories generated by the 
rotating dumbbell. With sin 2 Ow ,,~ ~, and an ad hoc ansatz mH = mw, both 
M and 1/(cd) 1/2 turn out to be ~1 TeV. 

Since this energy scale is much larger than rn~, ~ 0.1 TeV, which controls 
the thickness of the string and the poles, the object is far from an idealized 
one-dimensional system. For  our simple description to be valid, therefore, the 
length of the string must be at least comparable to 1/mw, which translates into 
an angular momentum L ~> 70. States having smaller L are presumably ill 
defined and highly unstable. 

For  large L, the system will be relatively stable against electromagnetic 
or weak decay, but it is liable to break up, very much like the hadrons in the 
string model. The high L states on the leading trajectory are inhibited from 
breaking up by the angular momentum barrier. This is because for a linear 
trajectory, a breakup of  mass M ~ M1 + Mz requires M 1> M1 + M2 or 
L ~/2 /> L~/2 + L~/2, which is compatible with angular momentum conserva- 
tion only if L~ or L2 = 0, or if the relative angular momentum is nonzero. 
By the same token, however, the formation of  such states is also suppressed. 
Thus it is not clear whether well-defined dumbell states can actually be 
produced with any reasonable cross section in, for example, p + p or e § + e-  
reactions. One might instead observe a broad enhancement in the yield of  
hadrons and leptons due to the formation of  virtual dumbbell states. 

3. ALMOST PURE GAUGES 

As we have learned from the foregoing examples, it is often very useful 
to specify a vector potential A~, under restricted conditions, in terms of  a 
prepotential. In particular, a pure gauge is completely characterized by a 
unitary matrix u: 

Au = iut~,u utu = uu* = 1 (3.!) 

As in the case of equation (1.1), however, such characterization is not as 
simple as one might think because u can develop topological singularities. 
Take, for example, the case of SU(2). The matrix u may be parametrized in 
terms of  a unit 4-vector 

u(x) = "r'~ '~ T a = (X, i) ~2 = 1 A~,'(x) = 2~'~cq~h0uq~ c (3.2) 
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where @c is a tensor introduced by 't Hooft. (This remark is due to S. Dimo- 
poulos.) Consider now the ansatz 

= = x ~  (3.3) 

It immediately leads to a singularity at the origin, and a nonzero 
Pontrjagin index. It does not seem proper to call such A, a pure gauge 
because 

Tr  f F,~ff,~d~x = f Q ,dS ,  =8~r 2 Q, = -{u*O~uO~u*O,u, "~;'~ (3.4) 

and hence F,~ cannot be identically zero. We are thus persuaded to enlarge 
pure gauges to a class of  almost pure gauges defined by 

U = f ( x ) u  (3.5) 

so that in the above example, f ( x )  may be allowed to vanish at the origin, at 
the same time making F,~ # 0 in its neighborhood. This modification leads to 

A,  = f2ut~ ,u  F~  = f2(1 - f2)Ouu*O~u + Ouf2u*~u - ~ ~ v) (3.6) 

Note the interesting involutive symmetry f24--~ 1 - f 2 .  With the ansatz, 
equation (3.3), a n d f  2 = 3, we obtain the meron configuration of  Callan et al. 
(1977). W i t h f  2 = x2/(x 2 + t2), we obtain the pseudoparticle (instanton) of 
Belavin et al. (1975). Another ansatz 

= (x/Ixl ,  o) (3.7) 

with f2  = i gives the Wu-Yang monopole. A suitable funct ionf(x)  will turn 
it into the 't Hooft-Polyakov monopole. 

I f  we are further willing to consider superpositions of  potentials of the 
form (3.6), we can also express 't Hooft 's  multi-instanton solution (Jackiw 
et al., 1977): 

It thus appears that almost pure gauges cover important topological con- 
figurations. Moreover, they are essential in studying the properties of the 
ground state, i.e., the vacuum. In fact, pure gauges are not a well-defined 
concept because it is impossible to separate them from their neighborhood 
consisting of almost pure gauges. ~ No doubt this lies at the heart of the 
problems recently posed by Gribov (1977). 

We hope that reasonings along this line of thought will help elucidate the 
properties of the vacuum in quantum chromodynamics, and shed light on 
the question of quark confinement. More details will be presented elsewhere. 

4 A recent remark by I. M. Singer (private communication) regarding the topological 
nonfactorizability of the space of gauge fields is probably addressed to the same point. 
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